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What Is Deep Learning?
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Artificial Intelligence The set of technics that can be used to mimic human behavior

Machine Learning The set of technics that can « learn » from examples  
without being  explicitly programmed

Deep Learning
The set of technics that can « learn » from examples  

using deep neural networks
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What to expect?

What not to expect?

1. Have a high level view of how neural networks works 

2. Getting familiar with general concepts such as overfitting, regularization,….  

3. Code and train your first neural network

3. You won’t know the state-of-the-art technics to deploy neural networks

1. You will not become an expert in deep learning

2. You (most likely) won’t be able to develop your own deep learning model
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Translation

Information Retrieval

Social Media AnalysisQuestion Answering
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Medical Imaging Drug Discovery
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Sport Analysis Video Games

ODE Chess
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Why and when to use deep learning in practice ?

12

Deep learning rely on the concept of learning from examples. 

You need « a lot of examples » How much in practice? Open research question

Why should you use deep learning?

Hand-crafted features are time consuming, not scalable and in practice sub-optimal

Deep Learning aims at automatically learning features directly from data! 

MNIST Features Learnt by the NN
Pattern,  

discriminative characteristics

Theses features  
are hard to guess !
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A brief history of deep learning
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Increase of computing power and available data

1986

Multi-layer 
perceptron

1958

Perceptron

1952
Stochastic 
Gradient 
Descent

1995

Deep CNN

2010

NVIDIA
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Deep learning date back decades, so why now? 

With internet we have access to massive amount of data

With GPUs we have access to massive amount of GPUs

Jeanzay etc..

With the huge effort of Google, Facebook and others we have access to high level Software
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NN can do that without any image processing background



Design the architecture
of the neural network
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x1

xi

xm

Input x

Σ

Weight combination

σ( ⋅ )

Non - linearity

̂y ̂y = σ (
m

∑
i=1

xiωi)

Output y ∈ ℛ
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corresponds to the pixels of the image.x1, ⋯, xm

̂y
corresponds to the any scalar > 0 if the 

Input is an cat  

corresponds to the any scalar < 0 if the 
Input is an dog  

corresponds to the index of the word in textx1, ⋯, xm

̂y corresponds to the any scalar between [0,5]  
and model the sentiment of the text.

I really love 
my professor 5
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Σ

Weight combination

σ( ⋅ )

Non - linearity

̂y ̂y = σ (
m

∑
i=0

xiωi)

Output y ∈ ℛ

x1

xi

xm

Input x

1
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Towards a Matrix Formulation
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̂y = σ (XTW)Matrix Formulation

̂y = σ (
m

∑
i=0

xiωi)Before

X = [x0, ⋯, xm] W = [ω0, ⋯, ωm]Where

Be aware !!!!!!  but  X ∈ ℛd ̂y ∈ ℛ

For an image of size H,W we have  but  X ∈ ℛH×W ̂y ∈ ℛ

Neural Network WeightsSimple Dot  
Product !
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For an image of size H,W we have  but  X ∈ ℛH×W ̂y ∈ [0,1]
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We have seen the forward propagation, i.e. from an input how to use the Neural Network

This operation is call forward propagation, this operation is used at inference time

1. The basic bloc to build a Neural Network
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σ(x) =
1

1 + ex

Sigmoid

σ(x) =
ex − e−x

ex + e−x

Tanh

σ(x) = max(0,x)

ReLU/GeLU
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Why should I use activations functions?

25

Suppose your goal is to separate/
classify, the green triangles from 
the orange squares…..

If you do not use linearity 
you decision  

boundary will an hyperplan

In this example 2D points represent the input (e.g. images/text)
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Why should I use activations functions?

26

Thanks to the linearity you 
can have more « complex 

decision functions ».

Suppose your goal is to separate, 
the green triangles from the orange 
squares…..

See universal 
approximation Theorem.
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Let’s sum up so far
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We have seen the forward propagation, i.e. from an input how to use the Neural Network

This operation is call forward propagation, this operation is used at inference time

1. The basic bloc to build a Neural Network

2. The role of activation functions  

They complexity the neural network and allow to fit more complex data

They are added at the end of each layer and there is a large variety of them
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̂y = (1 + 3x1 − 2x2)

x1

x2

Σ Id( ⋅ ) ̂y

1
1

2

-3

corresponds to the any scalar > 0 if the 
Input is an triangle  

corresponds to the any scalar < 0 if the 
Input is an square  

It is a triangle!

It is a square
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Adding layers is equivalent to adding new matrix and activation functions !

How do I choose the network architecture?

̂y = σ (⋯σ (W1σ (XTW0)T)))
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Research papers!
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Suppose that I give as input   
and obtain as output 

X = [1,2,3]
̂y = 0.5

How to measure the quality of the prediction?
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2
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0.5

True output 1 The loss of our network 
will measure the cost of Incorrect predictions

ℒ(X, Y, W, σ)
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In what follows the Neural Network will be denoted as fθ

θ = [W1, ⋯, Wk] the set of weight matrices

each  corresponds to the weights of the layer i Wi

 is obtained via composition 
of  and the activation functions

fθ
Wi
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Neural Networks learn from data but so far we assumed no data

The empirical loss  measures the total loss over our entire datasetJ (θ)

J (θ) =
1
N

N

∑
i=1

ℒ (fθ (Xi), yi)

We have access to a dataset 𝒟 = {Xi, yi}N
0

Each type of problem induces a different loss function (e.g. Classification, Regression)

each  corresponds to
an input sample (image)

Xi

each  
corresponds to
label (dog/cat) 

yi

Cost function

Empirical Risk

Objective function

Prediction ̂yi
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We have seen the forward propagation, i.e. from an input how to use the Neural Network

This operation is call forward propagation, this operation is used at inference time

1. The basic bloc to build a Neural Network

2. The role of activation functions  

They complexity the neural network and allow to fit more complex data

They are added at the end of each layer and there is a large variety of them

3. The cost function

It allows to measure how « far » is the neural network from the reality



How to perform the « learning phase »?
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We want to find the network’s weight that achieve the lowest cost/loss

θ* = argmin
θ

J (θ)

Remember: our loss is a function of the network weights θ = [W1, ⋯, Wk]

We will use gradient descent to find the best weights
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∑
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1. Initialize θ

2. While it has not converged

Compute the gradient ∇θJ(θ) This operation is called back-propagation

Update the weights θ = θ − λ∇θJ(θ) This operation is call gradient update

3. Return the final weights θ  should be closed to θ θ*

Goal: Find the best neural network weights

Usually sampled from a Gaussian distribution

 is the learning rateλ
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About Backpropagation

This step is compute intensive. This step is usually done on GPU

This step compute the gradient of the error w.r.t to the weights 

For most of the Neural Network you won’t be able to write the close form solution.

About the optimization algorithm

Finding a good learning rate  is crucial in practice.λ

There exists many alternative to Gradient Descent (e.g. SGD, Adam, RMSProp) 

Speed, speed, speed……
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Example of loss landscape of NN

What do you notice?

This is not convex at all !

Gradient descent can be stuck in local optima

Initialization will matter a lot!

Setting the learning rate will also matter!
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Learning rates a now adaptive

Can be made larger or small depending on the problem

« adapt them to the loss landscape »

Use Mini-batches for speed and stability

« Instead of computing the gradient on the whole dataset use a subset »

Smoother convergence + allows for larger learning rate 

Change the neural network architecture

Add more data
Those will always work!
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We have seen the forward propagation, i.e. from an input how to use the Neural Network

This operation is call forward propagation, this operation is used at inference time

1. The basic bloc to build a Neural Network

2. The role of activation functions  

They complexity the neural network and allow to fit more complex data

They are added at the end of each layer and there is a large variety of them

3. The cost function

It allows to measure how « far » is the neural network from the reality

4. The learning phase  

The Gradient descent algorithm that allows to update the weights of the networks
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We have access to a dataset 

𝒟 = {Xi, yi}N
0

Best practices: 1. ensure that your results are independent of the split

2. make sur that the proportion of the labels in the split are uniform

80%

Training Set

Use for the learning 
 algorithm

10%

Validation Set

Select best 
 hyper-parameter

10%

Testing Set

Measure  
the performance Measure performance 

 across different seeds
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Which situation consist of overfitting/underfitting/ just right ?

In practice, when the validation loss starts to increase you are overfitting

When to stop training? when the validation loss has converged or starts to increase 
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Select this final model

Regularization: the set of technics to prevent or fight overfitting

It improves the generalization capability of your model (i.e. better results)

Technique 2: Early Stopping During training randomly set some activation to 0

This is the reason you need a validation set!



Let’s sum up!



Pierre Colombo (MICS, CentraleSupelec) Introduction to Deep Learning

Procedure to use deep learning

53



Pierre Colombo (MICS, CentraleSupelec) Introduction to Deep Learning

Procedure to use deep learning

53

1. Get your data clean



Pierre Colombo (MICS, CentraleSupelec) Introduction to Deep Learning

Procedure to use deep learning

53

1. Get your data clean

2. Split your data into train/val/test split



Pierre Colombo (MICS, CentraleSupelec) Introduction to Deep Learning

Procedure to use deep learning

53

1. Get your data clean

2. Split your data into train/val/test split

3. Define your architecture/loss function/optimization algorithm

4. Train and tune your algorithm by monitoring training/validation loss



Pierre Colombo (MICS, CentraleSupelec) Introduction to Deep Learning

Procedure to use deep learning

53

1. Get your data clean

2. Split your data into train/val/test split

3. Define your architecture/loss function/optimization algorithm

4. Train and tune your algorithm by monitoring training/validation loss

5. Test your model on test set



Pierre Colombo (MICS, CentraleSupelec) Introduction to Deep Learning

Procedure to use deep learning

53

1. Get your data clean

2. Split your data into train/val/test split

3. Define your architecture/loss function/optimization algorithm

4. Train and tune your algorithm by monitoring training/validation loss

5. Test your model on test set

6. Deploy your model in production



Pierre Colombo (MICS, CentraleSupelec) Introduction to Deep Learning

Procedure to use deep learning

53

1. Get your data clean

2. Split your data into train/val/test split

3. Define your architecture/loss function/optimization algorithm

4. Train and tune your algorithm by monitoring training/validation loss

5. Test your model on test set

6. Deploy your model in production

Training Loop



Pierre Colombo (MICS, CentraleSupelec) Introduction to Deep Learning

Procedure to use deep learning

53

1. Get your data clean

2. Split your data into train/val/test split

3. Define your architecture/loss function/optimization algorithm

4. Train and tune your algorithm by monitoring training/validation loss

5. Test your model on test set

6. Deploy your model in production

Training Loop

80% of the job is done here! 
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Deep Learning ArchitectureData Predictions

Update ! Via GDθ

Cost function

Labels
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Deep Learning ArchitectureData Predictions
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 classify handwritten  

digits

MNIST Neural Network 1 - hidden layer

I want that you code, train and evaluate your first neural network !


